K⁺-induced relaxations of the rat anococcygeus muscle

A. GIBSON & T.A. JAMES

Department of Pharmacology, Chelsea College, University of London, London, SW3 6LX.

The actions of potassium chloride (KCl) on the rat anococcygeus muscle are complex (Gibson & Pollock, 1973). On the resting muscle, KCl produces dosedependent contractions, which are partly due to release of endogenous noradrenaline (NA) and partly to a direct depolarisation of the muscle membrane. However, when the tone of the muscle is raised, by acetylcholine (ACh) or guanethidine, KCl now produces dose-dependent relaxations.

Two possibilities might explain these relaxations produced by KCl. Firstly, since KCl caused the release of motor transmitter (NA) it was possible that the relaxations were due to release of the as yet unknown inhibitory transmitter thought to exist in this tissue (Gillespie, 1972). Alternatively, it has been suggested that KCl might inhibit muscular activity by stimulating Na/K ATPase activity on the muscle membrane (Johns & Paton, 1974; Shibata, Fukada & Kurahashi, 1973) thus producing hyperpolarization and consequently relaxation. The purpose of the present study, therefore, was to determine which, if either, of the above mechanisms might explain KClinduced relaxation of the rat anococcygeus muscle.

Adult male Wistar rats were killed by stunning and exsanguination. The two anococcygeus muscles were dissected (Gillespie, 1972) and suspended in oxygenated Krebs bicarbonate solution (36°C). To observe muscle relaxations to KCl the tone was first raised by addition of ACh (40 µM), normally in the presence of phentolamine (1 µM).

As found previously, KCl produced dose-related relaxations of the contracted anococcygeus muscle. Other K⁺ salts (bicarbonate and tartrate) also relaxed the muscle, while NaCl was ineffective suggesting that the active ion was K+. Dose-response curves for the contractile and relaxant actions of KCl were obtained, and these suggested that the muscle was more sensitive to the relaxant effects of KCl.

The K+-induced relaxations were unaffected by addition of ouabain to the bathing medium (100 µM for 30 min). However, the relaxations were completely, but reversibly, abolished by tetrodotoxin (5 μg/ml). The local anaesthetics procaine or cocaine (both 500 μg/ml) also abolished K+-induced relaxations, although they did not abolish the response to ACh, nor the relaxation following washout of agonist. Cooling the muscle to 10°C had a similar effect to that of the local anaesthetics.

In conclusion these experiments suggest that K+induced relaxations of the rat anococcygeus muscle are not due to stimulation of muscle Na/K ATPase, but that they are neurally-mediated and are probably due to release of the unknown inhibitory transmitter, the inhibitory nerves being more sensitive to the actions of K+ than the motor nerves.

References

- GIBSON, A. & POLLOCK, D. (1973). The effects of drugs on the sensitivity of the rat anococcygeus muscle to agonists. Br. J. Pharmac., 49, 506-513.
- GILLESPIE, J.S. (1972). The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br. J. Pharmac., 45, 404-416.
- JOHNS, A. & PATON, D.M. (1974). Inhibitory effect of sodium pumping on spontaneous contractility of rabbit myometrium. Can. J. Physiol. Pharmac., 52, 786-790.
- SHIBATA, S., FUKADA, H. & KURAHASHI, K. (1973). The inhibitory action of potassium on the mechanical and membranal activities of taenia from guinea-pig caecium. Life Sci., 12, 425-431.

How can one set multiple choice examinations of equal difficulty from year to year?

R.W. FOSTER

Pharmacology Department, Manchester University.

The method which I am exploring attempts to predict the outcome of an examination as a normally

distributed relationship between proportion of the candidates and score in the examination. The scoring system used is: correct +1, incorrect -1/(A-1), no answer 0. The mean score and variance of scores are obtained as in Figure 1.

The method used predictively makes three assumptions

(1) that P_i can be estimated from the scores on question i attained by previous classes of candidates (and similarly Q_i and $1-P_i-Q_i$).